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INTRODUCTION

A time-frequency representation (TFR) 
is widely used in the analysis of non-sta-
tionary signals such as,: human speech sig-
nals, ECG signals, geophysical signals. Ana-
lyzed signal is represented as a joint func-
tion of time and frequency  – rather than as  
a function of time or frequency [2, 3]. Such an 
analysis should constitute an important tool for 
understanding many processes and phenom-
ena within problems of estimation, detection  
or classification. A unified way of presenting 
different kinds of TFR was followed by L. Co-
hen in the mid-1960s (in a context of quan-
tum mechanics), what has become known as 
Cohen’s class since then [16, 17].  There has 

been a rapid growth of interest in this subject.  
The diversity of theoretical and practical view-
points from which they could be approached 
and the numerous known results would 
make a complete synthesis of this subject  
a voluminous document [13–15, 26–28]. More-
over, succinct [9, 13–15, 17, 33, 36, 39, 40] or 
detailed [18, 22, 23] publications already exist, 
and the reader is invited to refer to them. 

Time-frequency analysis (TF) can be used for 
acoustic signal analysis, including speech signals 
[4]. TF analysis is used as a tool in various types 
of techniques such as: speech coding, speech 
synthesis, speech recognition and speaker recog-
nition. These techniques are defined by a com-
mon term speech processing. Speech processing 
mostly performs two fundamental operations: 
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Feature Extraction [6] and Classification [7]. In 
scientific work [13] the authors presented survey 
of various feature extraction techniques in speech 
processing such as Fast Fourier Transforms, 
Linear Predictive Coding, Mel Frequency Ceps-
tral Coefficients, Discrete Wavelet Transforms, 
Wavelet Packet Transforms and their applications 
in speech processing. Very often for effective 
analysis speech signals they are used sparse time 
frequency representations [19, 24, 35]. In sci-
entific work [35] a comparison between atomic 
decomposition methods and time-frequency dis-
tributions with respect to speech signals is pre-
sented. The authors demonstrated that the highest 
resolution of the analysis is achieved with the ap-
plication Positive Time-Frequency Distributions. 
In scientific work [38] the authors conducted a 
comparison of speech signal analysis with the 
use of discreet Fourier transformation (DFT) and 
discreet cosines transformation DCT. The authors 
showed that the spectrograms plotted using DCT 
are clearer than the spectrograms plotted using 
same point DFT. Demonstrated that spectrogram 
using DCT is characterized by a higher resolution 
in relation to DFT. In the context of speech sig-
nal recognition, artificial neural networks are also 
used. The authors [34] compare various popular 
signal representations such as short-time Fourier 
transform (STFT) with linear and Mel scales, 
constant-Q transform (CQT) and continuous 
Wavelet transform (CWT), and assess their im-
pact on the classification performance of environ-
mental sound datasets using convolutional neural 
networks. It was shown that Mel-STFT spectro-
grams were consistently good performers across 
the variations tested. Time – frequency analysis is 
also used in biomedical diagnostics and analysis. 

In phoniatrics time-frequency representa-
tions (primarily  spectrograms and scaleograms) 
are used for diagnosis of diseases of the vocal or-
gans [1, 5, 9, 19, 20, 11, 35, 43, 45]. The authors 
[21] presented an overview of the methodology 
of automatic detection of pathological changes 
in the voice. In scientific work [37] the authors 
demonstrated detection and discrimination of 
voice disorders in using modulation frequency 
analysis. The authors [19] used  TF representa-
tions from the class Cohen for vocal fold’s onset 
signal for diagnosis of different phonation disor-
ders evoked by pathological changes. The vibra-
tion signals are acquired by direct optical inspec-
tion of the glottis using an endoscope and a high 
speed CCD camera system. In order to analyze 
the speech signal, TF representations from the 

Cohen class were used along with cone kernel 
distribution to ensure maximum smoothness over 
time. The authors show that even small pathologi-
cal changes in the vocal folds are visible on the 
time-frequency plane, which allows sensitive de-
tection of affects and helps to diagnose. Authors 
of many works in order to identify diseases and 
pathological changes in the voice used a discrete 
wavelet transformation DWT [1, 41] and support 
vector machine-based classification method as 
feature classification tools [1, 5, 6, 11]. In scien-
tific work [1, 21, 44] demonstrated that the most 
effective algorithm (100% recognition efficiency) 
is a system composed of wavelet packet trans-
forms along with feature dimension reduction by 
linear discriminant analysis and a support vector 
machine-based classification method.

MATHEMATICAL BASICS OF ANALYSIS

The concept of affine time-frequency repre-
sentation was introduced for the first time in 1985 
[8] and is based on wavelet transform. In fact, the 
wavelet transform is directly connected to affine 
time-frequency representations by means of a 
smoothing operation in the time-frequency plane, 
which explains the great importance of affine 
time-frequency representations in signal analy-
sis. First construction of these distributions was 
based on group theory [6, 7], a powerful tool in 
signal analysis, which did not, however, stir up an 
enthusiasm comparable with that caused by the 
study of Cohen’s class distributions [16]. Second 
approach [28] relies on the affine smoothing of 
certain distributions of Cohen’s class.

Spectrogram often used in signal analysis 
is the squared modulus of the short time Fou-
rier transformation (STFT) of signal x(t) and 
can be expressed as (1):

   𝑆𝑆𝑥𝑥(𝑡𝑡, 𝜈𝜈) = |∫ 𝑥𝑥(𝑢𝑢)ℎ∗(𝑢𝑢 − 𝑡𝑡)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝑢𝑢+∞
−∞ |

2
 

   𝑆𝑆𝑥𝑥(𝑡𝑡, 𝜈𝜈) = |∫ 𝑥𝑥(𝑢𝑢)ℎ∗(𝑢𝑢 − 𝑡𝑡)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝑢𝑢+∞
−∞ |

2
 

(1)

where: t – time, u – shift in time domain,
 v – frequency, h(t)- time window and
 ‘*’ is conjugate operator

Spectrogram belongs to the class of time-
frequency energy distributions. The purpose  
of energy distributions is to distribute the energy 
of the signal over the two description variables: 
time and frequency. Among the desirable proper-
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ties of an energy time-frequency distribution, two 
of them are of particular importance: time and 
frequency covariance (2–3):

    𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡 − 𝑡𝑡0)   →   𝑆𝑆𝑦𝑦(𝑡𝑡, 𝜈𝜈) = 𝑆𝑆𝑥𝑥(𝑡𝑡 − 𝑡𝑡0, 𝜈𝜈) 

    𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡 − 𝑡𝑡0)   →   𝑆𝑆𝑦𝑦(𝑡𝑡, 𝜈𝜈) = 𝑆𝑆𝑥𝑥(𝑡𝑡 − 𝑡𝑡0, 𝜈𝜈) 
(2)

 𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)exp (𝑗𝑗2𝜋𝜋𝜈𝜈0𝑡𝑡)  →  𝑆𝑆𝑦𝑦(𝑡𝑡, 𝜈𝜈) = 𝑆𝑆𝑥𝑥(𝑡𝑡, 𝜈𝜈 − 𝜈𝜈0) 

 𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)exp (𝑗𝑗2𝜋𝜋𝜈𝜈0𝑡𝑡)  →  𝑆𝑆𝑦𝑦(𝑡𝑡, 𝜈𝜈) = 𝑆𝑆𝑥𝑥(𝑡𝑡, 𝜈𝜈 − 𝜈𝜈0) 
(3)

where: t – time, t0 – shift in time domain,
 v – frequency,
 v0 – shift in frequency domain. 

These properties guaranty that, if the 
signal is delayed in time and modulated, its  
time-frequency distribution is translated of 
the same quantities in the time-frequency 
plane. This group of transformations is called 
the Weyl-Heisenberg group [3]. It has been 
shown that the class of energy time-frequen-
cy distributions verifying these covariance 
properties possesses the following general 
expression (4):

𝐶𝐶𝑥𝑥(𝑡𝑡, 𝜈𝜈; 𝜙𝜙) = ∭ 𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋(𝑠𝑠−𝑡𝑡)𝜙𝜙(𝜉𝜉, 𝜏𝜏) 𝑥𝑥(𝑠𝑠 + 𝜏𝜏/2) 𝑥𝑥∗
+∞

−∞
(𝑠𝑠 − 𝜏𝜏/2)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝜉𝜉𝑑𝑑𝑠𝑠𝑑𝑑𝜏𝜏 

𝐶𝐶𝑥𝑥(𝑡𝑡, 𝜈𝜈; 𝜙𝜙) = ∭ 𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋(𝑠𝑠−𝑡𝑡)𝜙𝜙(𝜉𝜉, 𝜏𝜏) 𝑥𝑥(𝑠𝑠 + 𝜏𝜏/2) 𝑥𝑥∗
+∞

−∞
(𝑠𝑠 − 𝜏𝜏/2)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝜉𝜉𝑑𝑑𝑠𝑠𝑑𝑑𝜏𝜏 

(4)

where: ϕ(ξ, τ) is two-dimensional function 
called parameterization function,

 (ξ, τ)  is same times called Doppler 
frequency and delay and s is shift in 
time domain,

 t – time  

This class of quadratic time-frequency dis-
tributions, which preserves time and frequency 
shifts is called Cohen’s class [21]. It can also be 
written as (5):

𝐶𝐶𝑥𝑥(𝑡𝑡, 𝜈𝜈;Π) = ∬ Π(𝑡𝑡 − 𝑠𝑠, 𝜈𝜈 − 𝑓𝑓) 𝑊𝑊𝑥𝑥(𝑠𝑠, 𝑓𝑓)
+∞

−∞
𝑑𝑑𝑠𝑠 𝑑𝑑𝑓𝑓 

𝐶𝐶𝑥𝑥(𝑡𝑡, 𝜈𝜈;Π) = ∬ Π(𝑡𝑡 − 𝑠𝑠, 𝜈𝜈 − 𝑓𝑓) 𝑊𝑊𝑥𝑥(𝑠𝑠, 𝑓𝑓)
+∞

−∞
𝑑𝑑𝑠𝑠 𝑑𝑑𝑓𝑓 

(5)

where f is a shift in frequency domain and (6):
Π(𝑡𝑡, 𝜈𝜈) = ∬ 𝜙𝜙(𝜉𝜉, 𝜏𝜏)

+∞

−∞
𝑒𝑒−𝑗𝑗2𝜋𝜋(𝜈𝜈𝜈𝜈−𝜉𝜉𝜉𝜉)𝑑𝑑𝜉𝜉𝑑𝑑𝜏𝜏 

Π(𝑡𝑡, 𝜈𝜈) = ∬ 𝜙𝜙(𝜉𝜉, 𝜏𝜏)
+∞

−∞
𝑒𝑒−𝑗𝑗2𝜋𝜋(𝜈𝜈𝜈𝜈−𝜉𝜉𝜉𝜉)𝑑𝑑𝜉𝜉𝑑𝑑𝜏𝜏 

(6)

is the two-dimensional Fourier transfer of the pa-
rameterization function ϕ(ξ, τ) and

 𝑊𝑊𝑥𝑥(𝑠𝑠, 𝑓𝑓) = ∫ 𝑥𝑥(𝑠𝑠 + 𝜏𝜏/2) 𝑥𝑥∗(
+∞

−∞
𝑠𝑠 − 𝜏𝜏/2) 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝜏𝜏 

 𝑊𝑊𝑥𝑥(𝑠𝑠, 𝑓𝑓) = ∫ 𝑥𝑥(𝑠𝑠 + 𝜏𝜏/2) 𝑥𝑥∗(
+∞

−∞
𝑠𝑠 − 𝜏𝜏/2) 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝜏𝜏 

(7)

is Wigner-Ville distribution (WVD) of signal 
x(t). In the case where Π is a smoothing func-
tion, this expression allows one to interpret Cx as 
a smoothed version of the WVD; consequently, 
such a distribution will attenuate in a particular 
way the interferences of the WVD.

This class is of significant importance 
since it includes a large number of the exist-
ing time-frequency energy distributions. The 
type of  parameterization function ϕ used (or 
smoothing function Π) determines the type 
of signal representation. The most frequently 
used representations include: Pseudo-Wigner-
Villa distribution PWVD, Smoothed-pseudo  
Wigner-Villa distribution SPWVD, Rihac-
zek distribution, Margenau-Hill distribution,  
Choi-Williams distribution, Born-Jordan distri-
bution and Zhao-Atlas-Marks distribution called 
also Cone-Shaped Kernel distribution [32].

The Cohen’s class, is based on the proper-
ties of covariance by shifts in time and in fre-
quency. In order to favor a time-scale approach 
of the signal, one can also choose to put forward, 
among these desirable properties, the covariance 
by translation in time and dilation [30]. The cor-
responding group of transforms, counterpart the 
Weyl-Heisenberg group, is the affine group. It can 
be expressed as (8):

Ψ𝑥𝑥(𝑡𝑡, 𝜈𝜈;Π) = ∬ Π (𝑠𝑠 − 𝑡𝑡
𝑎𝑎 , 𝑎𝑎𝑎𝑎)  𝑊𝑊𝑥𝑥(𝑠𝑠, 𝑎𝑎)

+∞

−∞
𝑑𝑑𝑠𝑠 𝑑𝑑𝑎𝑎 

Ψ𝑥𝑥(𝑡𝑡, 𝜈𝜈;Π) = ∬ Π (𝑠𝑠 − 𝑡𝑡
𝑎𝑎 , 𝑎𝑎𝑎𝑎)  𝑊𝑊𝑥𝑥(𝑠𝑠, 𝑎𝑎)

+∞

−∞
𝑑𝑑𝑠𝑠 𝑑𝑑𝑎𝑎 

(8)

The set of such representations de-
fines the affine class, which is the class  
of time-frequency energy distributions covari-
ant by translation in time and dilation. As in the 
case of Cohen class smoothing function type Π 
determines the type of representation. The most 
popular are: affine smoothed pseudo Wigner 
distribution ASPWD, Bertrand distribution,  
D-Flandrin distribution, Unterberger distribution 
(active and passive) [4, 6, 7, 23, 29, 30, 42].

Bilinear time-frequency distributions offer a 
wide range of methods designed for the analysis 
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of non-stationary signals. Nevertheless, a critical 
point of these methods is their readability, which 
means both a good concentration of the sig-
nal components and no misleading interference 
terms. Some efforts have been made recently in 
that direction, and in particular a general meth-
odology referred to as reassignment [34, 32]. The 
original idea of reassignment was introduced in 
an attempt to improve the spectrogram. Indeed, 
as any other bilinear energy distribution, the spec-
trogram is faced with an unavoidable trade-off 
between the reduction of misleading interference 
terms and a sharp localization of signal compo-
nents. The reassignment method concentrate the 
averaged energy of signal not at the geometrical 
center but rather at the center of gravity of the 
domain. Reasoning with a mechanical analogy, 
the local energy Time-distribution for example 
Π(𝑡𝑡 − 𝑠𝑠, 𝜈𝜈 − 𝑓𝑓) 𝑊𝑊𝑥𝑥(𝑠𝑠, 𝑓𝑓)  (as a function of s 
and f) can be considered as a mass distribution, 
and it is much more accurate to assign the total 
mass (i.e. the spectrogram value) to the center 
of gravity of the domain rather than to its geo-
metrical center. The reassignment principle can 
be used for any distributions belonging to Cohen 
and affine class. Reassigned distributions effi-
ciently combine a reduction of the interference 
terms provided by a well adapted smoothing ker-
nel and an increased concentration of the signal 
components achieved by the reassignment.

METHODOLOGY AND RESULTS OF 
ANALYSIS

The time-frequency representations presented 
above were applied to speech signals with dis-
ease syndromes. The used samples of recordings 

come from a person suffering from larynx can-
cer. Recordings were made using a simple audio 
recorder with a sampling frequency of 10kHz. 
TF analysis was performed in Matlab using the 
Time-Frequency Toolbox. For comparison, the 
results of the TFR analysis were presented using 
both the Cohen and the affine class TFR and their 
reassignment version. In addition to the spectro-
gram and its reassignment, PWVD and SPWVD 
reassignment versions (Fig.  2, 3, 4) were present-
ed in the Cohen class. In the affine class, Morlet’s 
skalogram with reassignment and ASPWD (Fig. 
5) were presented. In order to reduce processing 
time, processing was performed on samples with 
a reduced sampling rate of up to 2 kHz, so the 
received TFR images are limited to 1 kHz (the 
frequency scale is a relative scale). The time scale 
corresponds to the number of samples. The time 
of the analyzed signal was 5 seconds. In the pre-
processing stage, the recorded speech signal was 
processed into an analytical signal using Hilbert 
transform. TFR transformations were performed 
using the Keizer window. 

Figure 1 shows the Wigner-Ville distribution 
of the analyzed speech signal, which is the “basis” 
for the TFR representation used. Harmful interfer-
ence is shown in the image. TFR representations 
are obtained by appropriate smoothing of WV 
representation in the time and frequency domain.

The classical method of presentation of a 
sound signal in the form of a spectrogram (Fig. 2a) 
is obtained by simultaneous time and frequency 
smoothing. This results in the removal of harmful 
interference clearly visible on the WV representa-
tion (Fig. 1), but at the expense of reduced resolu-
tion and legibility of the received image. 

The PWVD representation (Fig. 3a) ob-
tained by smoothing only in the frequency do-

WV, log. scale, imagesc, Threshold=0.001%
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Fig. 1. Wigner-Ville distribution of the analyzed speech signal along with harmful interference
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main reduces the degree of harmful interfer-
ence, however, the readability of the resulting 
image is still insufficient.

The controlled degree of smoothing both in 
the time domain and frequency characteristic for 
the SPWVD representation (Fig. 4a) results in a 
significant increase in the readability of the ob-
tained images relative to PWVD, despite visible 
harmful interference.

Similar to the affine class, simultaneous time 
and scale smoothing in the field of wavelet trans-
formations (Fig. 5a) (Morler’s Skalogram) causes 
low readability of the received image despite the 
removal of harmful interferences. Controlled 
smoothing separately in time and scale in the case 
of ASPWD (Fig. 5b) significantly improves read-
ability of the resulting image. 

The use of the reassignment version for the 
TFR representation significantly increases the 
resolution of the images obtained, thereby in-
creasing the readability. The lesions are visible in 
a slightly fuzzy  manner on the spectrogram im-
ages (Fig.1a), SPWVD and ASPWD on reassign-
ment images (Fig. 2b, 3b, 4b and 5c) are clearly 
distinguishable which makes them easy to detect.

In the context of medical diagnostics, such 
an improvement of readability of the received 
TFR images can contribute to improved detection 
and evaluation of existing speech disorders. The 
complexity of the numerical operations occurring 
with such a representation results, however, in a 
significant lengthening of the analysis time, which 
excludes on-line processing mode applications.

CONCLUSIONS

Representations belonging to the class of 
time-frequented energy distributions are well 
known theoretically. However, their use in science 
and technology is mainly limited to a simple spec-
trogram, which is characterized by the lack of con-
trol over the degree of smoothing the signal. The 
resulting TFR image is therefore blurry, and for 
some applications (especially where the nuances 
in TFR play an important role) may not be suf-
ficient. The use of other representations belonging 
to this class, and especially in conjunction with 
their reassignment versions, allows a very accurate 
analysis of the signal at the time-frequency plane. 

a)

b)

Fig. 2. The classical method of presentation of a sound signal is: a) a spectrogram, and b) its reassignment. Ar-
rows indicate characteristic syndromes
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a)
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Fig. 3. Pseudo Wigner-Ville distribution a) and b) its reassignment version
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Fig. 4. Smoothed Pseudo Wigner-Ville distribution a) and b) its reassignment version
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The use of such TFR representations, among 
others in medical or technical diagnostics, can 
contribute to more effective detection of disease 
syndromes and malfunctions. However, due to 
the complexity of the numerical operations in-
volved in creating these representations (espe-
cially their reassignment), there is a need to de-
velop (optimize) computational algorithms that 
will shorten the analysis time and allow for on-
line mode application.
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